Takens–Bogdanov bifurcation of travelling-wave solutions in pipe flow

نویسندگان

  • F. MELLIBOVSKY
  • B. ECKHARDT
چکیده

The appearance of travelling-wave-type solutions in pipe Poiseuille flow that are disconnected from the basic parabolic profile is numerically studied in detail. We focus on solutions in the twofold azimuthally-periodic subspace because of their special stability properties, but relate our findings to other solutions as well. Using timestepping, an adapted Krylov–Newton method and Arnoldi iteration for the computation and stability analysis of relative equilibria, and a robust pseudo-arclength continuation scheme, we unfold a double-zero (Takens–Bogdanov) bifurcating scenario as a function of Reynolds number (Re) and wavenumber (κ). This scenario is extended, by the inclusion of higher-order terms in the normal form, to account for the appearance of supercritical modulated waves emanating from the upper branch of solutions at a degenerate Hopf bifurcation. We provide evidence that these modulated waves undergo a fold-of-cycles and compute some solutions on the unstable branch. These waves are shown to disappear in saddle-loop bifurcations upon collision with lowerbranch solutions, in accordance with the bifurcation scenario proposed. The travellingwave upper-branch solutions are stable within the subspace of twofold periodic flows, and their subsequent secondary bifurcations could contribute to the formation of the phase space structures that are required for turbulent dynamics at higher Re.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shock Wave Admissibility for Quadratic Conservation Laws

In this work we present a new approach to the study of the stability of admissible shock wave solutions for systems of conservation laws that change type. The systems we treat have quadratic ux functions. We employ the fundamental wave manifold W as a global framework to characterize shock waves that comply with the viscosity admissibility criterion. Points of W parametrize dynamical systems as...

متن کامل

Traveling waves, catastrophes and bifurcations in a Generic Second Order Traffic Flow Model

We consider the macroscopic, second order model of Kerner–Konhäuser for traffic flow given by a system of PDE. Assuming conservation of cars, traveling waves solution of the PDE are reduced to a dynamical system in the plane. We prove that under generic conditions on the so called fundamental diagram, the surface of critical points has a fold or cusp catastrophe and each fold point gives rise t...

متن کامل

Pulsating Instabilities of Combustion Waves in a Chain-Branching Reaction Model

In this paper we investigate the properties and linear stability of travelling premixed combustion waves and the formation of pulsating combustion waves in a model with two-step chain-branching reaction mechanism. These calculations are undertaken in the adiabatic limit, in one spatial dimension and for the case of arbitrary Lewis numbers for fuel and radicals. It is shown that the Lewis number...

متن کامل

On the Takens-Bogdanov Bifurcation in the Chua’s Equation

The analysis of the Takens-Bogdanov bifurcation of the equilibrium at the origin in the Chua’s equation with a cubic nonlinearity is carried out. The local analysis provides, in first approximation, different bifurcation sets, where the presence of several dynamical behaviours (including periodic, homoclinic and heteroclinic orbits) is predicted. The local results are used as a guide to apply t...

متن کامل

The Bogdanov-Takens bifurcation study of 2m coupled neurons system with 2m+1$2m+1$ delays

In this paper the Bogdanov-Takens (BT) bifurcation of an 2m coupled neurons network model with multiple delays is studied, where one neuron is excitatory and the next is inhibitory. When the origin of the model has a double zero eigenvalue, by using center manifold reduction of delay differential equations (DDEs), the second-order and third-order universal unfoldings of the normal forms are ded...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011